Nicotinamide nucleotide transhydrogenase (NNT) deficiency dysregulates mitochondrial retrograde signaling and impedes proliferation
نویسندگان
چکیده
To study the physiological roles of NADH and NADPH homeostasis in cancer, we studied the effect of NNT knockdown on physiology of SK-Hep1 cells. NNT knockdown cells show limited abilities to maintain NAD+ and NADPH levels and have reduced proliferation and tumorigenicity. There is an increased dependence of energy production on oxidative phosphorylation. Studies with stable isotope tracers have revealed that under the new steady-state metabolic condition, the fluxes of TCA and glycolysis decrease while that of reductive carboxylation increases. Increased [α-ketoglutarate]/[succinate] ratio in NNT-deficient cells results in decrease in HIF-1α level and expression of HIF-1α regulated genes. Reduction in NADPH level leads to repression of HDAC1 activity and an increase in p53 acetylation. These findings suggest that NNT is essential to homeostasis of NADH and NADPH pools, anomalies of which affect HIF-1α- and HDAC1-dependent pathways, and hence retrograde response of mitochondria.
منابع مشابه
Deletion of nicotinamide nucleotide transhydrogenase: a new quantitive trait locus accounting for glucose intolerance in C57BL/6J mice.
The C57BL/6J mouse displays glucose intolerance and reduced insulin secretion. The genetic locus underlying this phenotype was mapped to nicotinamide nucleotide transhydrogenase (Nnt) on mouse chromosome 13, a nuclear-encoded mitochondrial protein involved in beta-cell mitochondrial metabolism. C57BL/6J mice have a naturally occurring in-frame five-exon deletion in Nnt that removes exons 7-11. ...
متن کاملThree‐Dimensional Model of Human Nicotinamide Nucleotide Transhydrogenase (NNT) and Sequence‐Structure Analysis of its Disease‐Causing Variations
Defective mitochondrial proteins are emerging as major contributors to human disease. Nicotinamide nucleotide transhydrogenase (NNT), a widely expressed mitochondrial protein, has a crucial role in the defence against oxidative stress. NNT variations have recently been reported in patients with familial glucocorticoid deficiency (FGD) and in patients with heart failure. Moreover, knockout anima...
متن کاملImpact of a novel homozygous mutation in nicotinamide nucleotide transhydrogenase on mitochondrial DNA integrity in a case of familial glucocorticoid deficiency
BACKGROUND Familial Glucocorticoid Deficiency (FGD) is a rare autosomal recessive disorder that is characterized by isolated glucocorticoid deficiency. Recently, mutations in the gene encoding for the mitochondrial nicotinamide nucleotide transhydrogenase (NNT) have been identified as a causative gene for FGD; however, no NNT activities have been reported in FGD patients carrying NNT mutations....
متن کاملCell-free translation of mitochondrial nicotinamide nucleotide transhydrogenase.
Mammalian nicotinamide nucleotide transhydrogenase is translated as a 5000 daltons larger molecular weight precursor in a cell-free system programmed with rat liver polysomes. The mature rat liver enzyme had the same molecular weight as the purified beef heart enzyme, 115 000 daltons. The precursor was not processed in vitro by liver mitochondria or by a rat liver mitochondrial matrix fraction,...
متن کاملInhibition of the mitochondrial nicotinamide nucleotide transhydrogenase by dicyclohexylcarbodiimide and diethylpyrocarbonate.
The mitochondrial nicotinamide nucleotide transhydrogenase enzyme (EC 1.6.1.1) is inhibited by treatment with dicyclohexylcarbodiimide or diethylpyrocarbonate. Both inhibitions are pseudo first order with respect to incubation time, and both reaction orders with respect to inhibitor concentration are close to unit, indicating that in each case inhibition results from the binding of one inhibito...
متن کامل